高级检索

基于深度学习的三维点云修复技术综述

3D Point Cloud Restoration via Deep Learning: A Comprehensive Survey

  • 摘要: 三维点云是最常用的三维场景/物体表示方法之一.根据点云修复侧重点不同,将基于深度学习的三维点云修复技术划分为密集重建、补全重建和去噪重建3类;详细分析了相关典型修复模型及关键技术,如特征编码、特征扩展和损失函数设计;总结了常用的网络模块、点云数据集和评估准则;最后讨论了3类修复技术之间的关系,并从旋转不变性特征提取、细节信息修复、拓扑关系保持、几何算法应用和多模态数据融合5个方面探讨了点云修复技术面临的挑战及未来发展趋势.

     

    Abstract: 3D point cloud is one of the most commonly used 3D scene/object representation methods.Ac-cording to the different emphases of point cloud restoration,3D point cloud restoration technologies based on deep learning are divided into three classes:dense reconstruction,complete reconstruction and denoising reconstruction.Typical restoration models and key techniques,such as feature coding,feature extension,and loss function design,are analyzed.Commonly used network modules,point cloud data sets,and evaluation criteria are summarized.Finally,the relationship between the three kinds of point cloud restoration tech-nologies is discussed,and the challenges and future development trends of point cloud restoration technolo-gies are explored from five aspects:rotation invariant feature extraction,detail information repair,topologi-cal relationship preservation,geometric algorithm application,and multimodal data fusion.

     

/

返回文章
返回