高级检索

针对新型冠状病毒肺炎X射线图像识别的DD-CovidNet模型

DD-CovidNet Model for X-Ray Images Recognition of Coronavirus Disease 2019

  • 摘要: 受医疗资源紧张和医疗水平较低等因素的影响,新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)尚未得到有效控制.利用深度学习方法在胸部X射线(chest X-ray,CXR)图像中检测感染者是一种安全有效的途径.针对上述问题,提出一种自动识别COVID-19的CXR图像的智能方法.根据CXR图像的特点,提出了对特征信息敏感的双路径多尺度特征融合(dual-path multi-scale fusion,DMFF)模块和密集空洞深度可分离卷积(dense dilated depthwise separable,D3S)模块,分别提取浅层特征与深层特征.在此基础上,设计了高效的轻量级卷积神经网络——DD-CovidNet.DMFF模块通过融合多尺度特征感知更丰富的浅层特征,D3S模块通过强化特征传递与增大感受野提取更有效的类别区分特征.在2个数据集上进行了实验验证,结果表明,DD-CovidNet模型对COVID-19识别的灵敏度为96.08%,精度与特异性均为100.00%,且具有较少的参数量与较快的分类速度.与其他模型相比,DD-CovidNet模型的检测速度更快,检测结果更准确.

     

    Abstract: Affected by the shortage of medical resources and low level of medical care,coronavirus disease 2019(COVID-19)has not yet been contained.It is a safe and effective way to detect infection in chest X-ray(CXR)images by deep learning.To solve the above problems,an intelligent method for automatic recogni-tion of COVID-19 in CXR images is proposed.According to the characteristics of CXR images,a dual-path multi-scale feature fusion(DMFF)module and dense dilated depthwise separable(D3S)module are pro-posed to extract the shallow and deep features respectively.On this basis,an efficient and lightweight con-volutional neural net-work—DD-CovidNet,is designed.DMFF module can sense more abundant spatial in-formation by fusing multi-scale features.D3S module can extract more effective classification information by enhancing feature transfer and enlarging receptive field.The method is validated on two data sets.The experimental results show that the sensitivity of DD-CovidNet model for COVID-19 recognition is 96.08%,the precision and specificity are 100.00%,and it has less parameters and faster classification speed.Com-pared with other models,DD-CovidNet model has faster detection speed and more accurate detection results.

     

/

返回文章
返回