高级检索

Text2Palette: 基于互联网图像的颜色主题自动生成方法

Text2Palette: Text-Driven Color Palette Generation Using Internet Images

  • 摘要: 根据用户输入的单词或短语文本生成对应的颜色主题,是自动化获取颜色主题的手段之一,对图像处理研究和艺术设计等领域至关重要.基于问题特点和已有方法的缺陷,针对性地设计了基于互联网图像的颜色主题自动生成方法.该方法包括以下3个步骤:首先,将用户输入文本作为搜索关键字,在互联网上或者在图像数据库中检索出相关的图像,并为每幅图像分别生成一个可以表示该图像各颜色成分分布的颜色主题;然后,采取近邻传播方法对所有生成的颜色主题进行聚类分析,将它们分为若干组,并进一步根据组内组外差距指标对它们进行排序;最后,从排序靠前的每一组中,选择一个具有代表性的颜色主题,作为多个颜色主题候选结果提供给用户.该方法简单、易用,能够生成符合语义且多样性高的颜色主题.用户调研结果表明,与Text2Colors方法相比,该方法生成的颜色主题在语义上更正确,也更具多样性.在随机选取的输入文本数据集中,有过半用户认为该方法在正确性和多样性上更优的输入文本比例分别为69%和94%.

     

    Abstract: Generating a color theme according to users’text input is one way to automatically obtain the color theme and is important to image processing and art design.A method of text-driven color palette generation using Internet images is proposed,based on the characteristics of the problem and the shortcomings of existing approaches.The proposed method consists of 3 steps.First,it collects many images from the Internet or image database using users’text input as a search keyword and then generates a color palette for each collected image depicting its color distribution.Second,it organizes the color palettes for all collected images into clusters with the affinity propagation clustering method,then sorts them according to the cross-group difference index proposed in this paper.Third,it picks one representative palette for each cluster among a few top clusters,forming the final color palette candidates result.The whole method is simple,easy to use,and able to generate semantically diverse color themes.The user study results show that compared with the method called Text2Colors,the color themes generated by this paper’s method are more semantically correct and more diverse.For 69%and 94%of the input text in the randomly selected input text data set,more than half of the users think that this paper’s method has better accuracy and diversity,respectively.

     

/

返回文章
返回