深度特征融合的头发属性转移方法
Hair Attribute Transfer via Deep Feature Fusion
-
摘要: 针对现有的属性转移方法无法有效地转移头发属性这一问题,提出一种深度特征融合的头发属性转移方法.该方法包括特征提取、属性向量获取和图像合成3个子网络.首先从特征提取网络中提取原图像特征,添加重构损失保持原图像的身份不变;然后在属性向量获取网络中构建头发特征与头发属性的映射模型,得到属性向量;最后将原图像特征与属性向量融合输入到合成网络,生成最终结果.在FFHQ数据集上进行了多种属性转移实验,结果表明,所提方法可以有效地转移头发属性,生成高分辨率的结果.大量在Celeba数据集上进行的实验结果表明,与现有的主流属性转移方法相比,所提方法可以取得更好的视觉效果.Abstract: To tackle the problem that existing attribute transfer methods can’t transfer hair attributes effectively,a method of hair attribute transfer based on deep feature fusion is presented.This method includes three subnetworks which are responsible for feature extraction,attribute vector extraction and image synthesis.Firstly,feature extraction network extracts features from original images,and keeps the identity of original images unchanged by adding a reconstruction loss.At the same time,attribute vector extraction network constructs the mapping model of hair features and hair attributes,and generates the attribute vector.Finally,the synthesis network takes the fusion result of image features and the attribute vector as input,and generates final results.Various attribute transfer experiments on FFHQ show that the proposed method can effectively transfer hair attributes and generate high-resolution results.Experiments on Celeba show that the proposed method can achieve better visual quality than existing popular attribute transfer methods.