高级检索
黄廷辉, 李升典. GSM-CrackFormer: 基于高斯尺度混合模型的多应用场景裂缝检测方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.20196
引用本文: 黄廷辉, 李升典. GSM-CrackFormer: 基于高斯尺度混合模型的多应用场景裂缝检测方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.20196
Tinghui Huang, Shengdian Li. GSM-CrackFormer: Crack Detection Method in Multi-Application Scenarios Based on Gaussian Scale Mixed Model[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.20196
Citation: Tinghui Huang, Shengdian Li. GSM-CrackFormer: Crack Detection Method in Multi-Application Scenarios Based on Gaussian Scale Mixed Model[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.20196

GSM-CrackFormer: 基于高斯尺度混合模型的多应用场景裂缝检测方法

GSM-CrackFormer: Crack Detection Method in Multi-Application Scenarios Based on Gaussian Scale Mixed Model

  • 摘要: 传统图像处理方法或机器学习方法解决裂缝检测问题通常仅适应特定场景. 随着场景切换, 此类方法的检测精度会受到显著的影响, 在多应用场景下缺乏鲁棒性. 为了适应多应用场景, 在原裂缝检测方法CrackFormer基础上进行出改进, 提出一种基于高斯尺度混合模型的检测方法——GSM-CrackFormer. 首先通过高斯尺度混合模型构建描述裂缝特征的高斯分布的模块; 然后结合门控机制设计信号转换模块, 将由分布生成的裂缝特征信息转化为锐化裂缝语义特征的指导信号, 通过新颖的上下采样策略进一步平衡模型感受野与其捕获细节特征能力之间的关系; 最后调整损失函数, 缓解裂缝像素与非裂缝像素之间不平衡的问题. 在多样化场景数据集CrackSeg9k上进行训练和评估的实验结果表明, 所提方法优于目前最先进的方法, 其全局最佳(ODS)指标达到0.784, 单图最佳(OIS)指标达到0.785, 平均交并比(MIoU)达到0.828.

     

    Abstract: Traditional image processing methods or machine learning approaches for addressing crack detection problems typically cater to specific scenarios. As the scene changes, the detection accuracy of such methods is significantly affected, lacking robustness across multiple application scenarios. To adapt to diverse application contexts, improvements have been made upon the original crack detection method, CrackFormer, leading to the proposal of a detection approach based on the Gaussian Scale Mixture (GSM) model, known as GSM-CrackFormer. Firstly, a Gaussian Scale Mixture model is constructed to describe Gaussian distributions related to crack features. Subsequently, a signal transformer is designed, incorporating a gating mechanism to convert crack feature information generated by the distributions into guiding signals for enhancing semantic features. Additionally, a novel up-down sampling strategy is introduced to further balance the relationship between model receptive fields and its capability to capture detailed features. By adjusting the loss function, the imbalance issue between crack and non-crack pixels is effectively mitigated. Finally, we conduct experiments on the CrackSeg9k dataset to evaluate the performance of our proposed method. Our experimental results demonstrate that GSM-CrackFormer outperforms state-of-the-art methods, achieving a global best (ODS) of 0.784, a monograph best (OIS) of 0.785, and a mean intersection ratio (MIoU) of 0.828.

     

/

返回文章
返回