利用稀疏点云偏序关系的半监督单目图像深度估计
Exploiting Partial Order Relationship of Sparse Point Cloud for Semi-Supervised Monocular Image Depth Estimation
-
摘要: 为了减少传统基于学习的深度估计方法对大量稠密深度数据的依赖,提出了一种基于偏序关系的深度估计方法.首先对RGB图像进行超像素划分,根据稀疏点云在超像素图像上的投影生成超像素的深度,进而在超像素中心之间建立了深度偏序关系,结合稀疏点云的实际深度值作为监督信息,训练卷积神经网络估计场景深度.在NYU Depthv2数据集上的实验结果表明,该方法仅需稀疏点云就可达到0.262的平均相对误差,优于之前国际同类方法,甚至超过部分使用稠密深度数据的监督方法.Abstract: To reduce the dependency of dense depth data, we propose a partial-order-relationship based depth estimation method, which learns monocular depth maps from the sparse 3 D point cloud. Firstly, the RGB image is divided into superpixels, and the depth values of superpixels are generated according to the projection of the sparse point cloud on the superpixel image. Then a set of depth partial order relationship is generated at the center of superpixels. Subsequently, the depth partial order relationship of the RGB image and the actual depth value of the sparse point cloud are combined to train a convolutional neural network to estimate the depth map of the scene. The experimental results on the sparse point clouds sampled from NYU Depth v2 show that our method achieves an average relative error of 0.262 with sparse point cloud, which is better than the conventional methods, and even better than some supervised methods using dense depth data.