结合序列学习和U型网络的海马体分割方法
Combining Sequence Learning and U-Like-Net for Hippocampus Segmentation
-
摘要: 针对普通二维语义分割网络难以精确分割海马体磁共振图像的问题,提出结合序列学习和U型网络的海马体分割方法.该方法中,U型网络由编码器和解码器2部分组成,编码器提取并编码图像特征,解码器组合特征并输出分割掩码;序列学习使用双向卷积长短期记忆网络引入相邻切片间的依赖信息以提升分割精度.在ADNI数据集上的实验结果表明,文中方法的分割性能较通常的U型网络更优,且网络的可视化结果表现出可解释性,与专家知识相符合.Abstract: Due to the difficulty in the precise segmentation of hippocampus MRI by ordinary 2D semantic segmentation network,a hippocampus segmentation method combining sequence learning and U-like-net is proposed.The U-like-net consists of two parts:the encoder and the decoder.The encoder is used for extracting and encoding image features.The decoder combines the features and outputs the segmentation mask.To further improve segmentation precision,sequence learning introduces dependency information between adjacent slices with bi-directional convolutional long short-term memory.The experiment on ADNI dataset shows that the proposed method outperforms the usual U-like-net.The visualization results of the proposed network are interpretable and accord with expert knowledge.