高级检索

基于深度金字塔网络的Pan-Sharpening算法

Pan-Sharpening Based on a Deep Pyramid Network

  • 摘要: 为了利用高空间分辨率单波段的全色(PAN)图像和低空间分辨率的多光谱图像(MS)生成高分辨率的多光谱图像,提出一种基于深度金字塔网络的遥感图像融合(即pan-sharpening)算法,通过图像金字塔的方式逐层上采样来重构高分辨率的多光谱图像.在细节保持方面,针对全色图像和多光谱图像在尺度上跨度过大的问题,采用深度金字塔网络多尺度地融合全色图像的细节信息;在光谱保持方面,使用反卷积层代替传统的超分辨算法来上采样低分率的多光谱图像;最后将这2部分相加,得到最终的融合图像. GeoEye-1数据集上的实验结果表明,文中算法综合性能优于BDSD, PRACS, PNN and PanNet算法.

     

    Abstract: The purpose of remote-sensing image fusion(ie, pan-sharpening) is to generate high-resolution multispectral images using high-resolution single-band panchromatic(PAN) images and low-resolution multispectral images(MS). In this paper, a pan-sharpening algorithm based on deep pyramid network is proposed, which reconstructs high-resolution multispectral images through layer-by-layer upsampling. To preserve detail information, aiming at the problem that the panchromatic image and the multispectral image differ too large in scale, this paper uses the deep pyramid network to fuse the details of the panchromatic image in a multi-scale fusion strategy. For spectral preservation, this paper uses the deconvolution layer instead of the traditional super-resolution algorithm to upsample low-resolution multispectral images. Finally, the two parts are added to obtain the fused image. The experimental results on GeoEye-1 datasets demonstrate that the proposed algorithm achieve competitive performance in comparison with BDSD, PRACS, PNN and PanNet.

     

/

返回文章
返回