高级检索

多元线性回归引导的立体匹配算法

A Stereo Matching Algorithm Guided by Multiple Linear Regression

  • 摘要: 深度图像中视差跳变的像素点匹配一直是立体匹配的挑战性问题之一.基于引导滤波的局部立体匹配算法通过考虑匹配图像内容,可以在保持深度图像边缘的同时提高匹配精度、加快匹配速度,但引导滤波会产生图像光晕,在图像边缘区域也会引入大量的噪声.为此,将引导滤波的岭回归扩展到多元回归,提出一种基于多元线性回归的立体匹配算法.首先将引导滤波中只含图像像素值这一单变量的回归方程扩展为基于图像像素值和梯度信息等多个变量的多元回归方程,对初始代价值进行滤波聚合,并与单独进行引导滤波的匹配代价聚合值进行加权组合提高图像边缘的匹配效果;然后根据代价聚合最小值与次小值之间的相互关系定义了视差选择可信度,解决了视差选择时的歧义问题.在Middlebury测试平台进行了实验的结果表明,文中算法有效地提高深度图像中视差跳变像素点的匹配精度,降低了匹配噪声;与最新的高性能立体匹配算法相比,该算法可以以较小的计算复杂度获得高质量的视差图.

     

    Abstract: In the stereo matching,the matching of edge pixels in depth image is one of the challenging problems of this technology.The local stereo matching based on the guided image filtering can protect the edge of the depth image and improve the matching precision and accelerate the speed,but this makes the image halo and also introduces a lot of noise in the edge area of the image.In this paper,ridge regression of guided filter is extended to multiple linear regression,and a stereo matching framework of multiple linear regression is proposed to extend the cost aggregation method.The framework is designed to better protect the edge of the depth image.To improve the matching accuracy of the disparity,the proposed algorithm sets up the multiple regression equation of the image pixel value and the gradient information as the variable.Then a weighted combination of cost aggregated values is carried out with the guidance filtering alone.At the same time,the concept of credibility is defined.It is described by the relationship between the minimum value and the minor value of the cost aggregation to avoid ambiguity when facing the disparity selection.The algorithm in this paper is tested on the Middlebury platform.The results show that the framework can effectively improve the precision and reduce the noise.Compared with some high performance algorithms,the algorithm can get high quality disparity map.

     

/

返回文章
返回