高级检索

面向自动扫描的三维形状多层次局部匹配算法

Multi-level Partial Matching Algorithm for Autoscanning of 3D Shape

  • 摘要: 为了让机器人在对未知场景的扫描与重建过程中同时获得对该场景的理解,需要基于目前已有的部分信息进行物体分割与识别,解决基于不完整点云的局部匹配问题.针对已有的局部匹配方法面临着匹配准确度低、计算复杂度高等问题,提出三维形状的多层次局部匹配算法.在粗层次上,通过使用改进的词袋方法进行降维加速;在细层次上,通过精细地筛选三维特征点对之间的对应关系提升精度.首先使用基于深度学习描述子的多尺度SVM方法对数据库中模型上的特征点进行聚类,然后采用基于空间关系的视觉词袋方法在数据库中检索候选模型,最后基于全局和局部等距性对不完整点云与候选模型间的特征点对对应关系进行筛选.文中对于各部分算法分别进行验证,并与相关算法进行对比和评估,实验结果表明,该算法显著提高了局部匹配的准确性,为机器人在线场景扫描、分析、重建等相关工作提供了十分有意义的参考和支持.

     

    Abstract: To allow the robot understand the scene while scanning and reconstructing an unknown scene,objects must be segmented and recognized using current scanning data,which requires to solve the partial matching problem based on incomplete point cloud.Existing methods still suffer from low matching accuracy and high computation cost.To this end,we propose a novel multi-level partial matching method.We use Bag of Words framework to reduce the feature dimension and accelerate computation in a coarse level and filter the correspondence between feature points to improve matching precision in a fine level.Specifically,our approach first leverages the multi-scale SVM method to cluster the feature points of models in the dataset.Then,a spatially-sensitive Bag of Words method is used to retrieve candidate models from the dataset.Finally,a partial matching method based on both global and local isometry is applied to filter the feature correspondence between query point cloud and the candidate model.A variety of evaluations and comparisons have shown the feasibility and efficiency of our approach.The proposed method provides a meaningful reference for automatic robotic scene scanning,analysis,and reconstruction and will stimulate other future works.

     

/

返回文章
返回