五次单参复多项式映射构造具有高周期吸引轨道的IFS
Nonlinear IFS from Quintic Complex Polynomial Mappings with Single Complex Parameter and Multiperiodic Orbits
-
摘要: 为了采用复解析多项式映射的广义M集的高周期参数构造非线性迭代函数系,提出利用复映射f(z)=z^5+c的高周期参数构造生成分形或奇怪吸引子的非线性迭代函数系构造方法.在参数平面上的M集中,在每个高周期参数区域的变形4瓣结构的周期芽苞上构造一个连结4个花瓣区域顶点的椭圆;在椭圆附近或椭圆内挑选k≥2个参数;在每个参数下的充满Julia集内由拓扑共轭关系定义5个迭代映射;由5k个迭代映射定义了具有旋转对称特性的迭代函数系,在其公共吸引域内随机迭代生成分形.实验结果表明,在复映射f(z)=z^5+c的M集高周期参数区域的椭圆附近或椭圆内挑选参数,可以用于构造有效的非线性迭代函数系;采用文中方法可以生成结构各异的具有5旋转对称特性的分形或奇怪吸引子.Abstract: To construct the new fractals or new strange attractors,we present a method which can be used to construct a nonlinear IFS composed of the quintic complex polynomial mappings with the single complex parameter and the multiperiodic orbit.In the M set of the parameter plane,an ellipse is constructed,which connects the 4 vertexes of the periodic bud with the 4 transmutative petal-structure in every high-periodic parameter region;( k≥2 ) parameters are chosen in or near the ellipse; 5 topological conjugate mappings are defined in the filled-in Julia set for every parameter; an IFS is composed of the 5k mappings; a fractal is constructed by randomly iterating the IFS in the common attracting basin of the 5k mappings.The results show that the parameters,chosen in or near the ellipse of the high-periodic parameter region from the mapping of f (z)=z^5+c ,can be used to construct the valid IFSs.The fractals or strange attractors with 5 rotational symmetry and the different structures can be generated by the method presented in this paper.