高级检索

区域弱相关自表示的显著目标检测方法

Salient Object Detection with Self-Representation and Weak Correlation of Salient Region

  • 摘要: 针对显著目标不相似时目标的显著值不一致问题,提出区域弱相关自表示的显著目标检测方法.首先在低秩矩阵恢复理论基础上为显著目标引入拉普拉斯正则项,以增大显著目标与背景的差异;然后最小化显著目标自表示系数的F-范数,使检测出的显著目标一致高亮;最后用可调节反正切函数对背景施加强的低秩约束,使背景与显著目标最大程度分离.在公开的显著目标检测数据集上与不同的显著目标检测方法进行对比实验,结果表明,该方法能得到更完整的显著目标和更一致的显著图.

     

    Abstract: When salient objects are not similar,the saliency values of these objects are not consistent.To address this problem,we proposed a salient object detection method with self-representation and weak correlation of salient region.Firstly,on the basis of the low rank matrix recovery theory,we introduced Laplace regular term for the salient objects to increase the difference between the salient objects and background.Then we minimized F-norm of self-representation coefficients of salient objects,which make salient objects uniformly highlighted.Finally,we adopted the low rank constraint by an adjustable arctangent function to separate the salient objects from background very well.The experimental results on the public salient object detection data sets show that the proposed method can obtain more complete salient objects and more consistent saliency maps.

     

/

返回文章
返回