高级检索

有理Bezier曲线的分段Mobius重新参数化

Piecewise Mobius Reparameterization of Rational Bezier Curves

  • 摘要: 为了得到近似弧长参数的有理Bézier曲线表示,提出基于分段Möbius参数变换的有理Bézier曲线的重新参数化方法.该方法将曲线的曲率极大值点作为分段点构造分段Möbius参数函数;在保证参数速率C1的连续条件下,用新参数速率关于单位速率偏离变量的L2范数作为度量标准函数;通过最小化该目标函数求得分段Möbius函数的具体表示.实例结果表明,通过分段Möbius变换后,有理Bézier曲线的参数具有很好的弧长参数近似效果.

     

    Abstract: In order to get the approximately arc-length parameterized rational Bézier curves, a method for reparameterization of rational Bézier curves is proposed based on a piecewise M?bius parameter transformation. This method constructs the piecewise M?bius transformation applying to the rational Bézier curve, on which the break points are chosen as the locally maximal value points of its curvature. And a metric function is defined by the deviation of new parametric speed from unit-speed with respect to L2 norm under the condition of C1 continuous parametric speed. Then the expression of this M?bius transformation is obtained by minimizing the metric function. Numerical examples show that rational Bézier curves with piecewise M?bius transformation have good parameters very close to the arc-length parameter.

     

/

返回文章
返回