高级检索

结合Fisher编码和距离学习的非刚体三维检索方法

Non Rigid 3D Model Retrieval Method Based on Fisher Vector Encoding and Distance Learning

  • 摘要: 针对目前非刚体三维特征描述子表现力不足的问题,提出一种结合Fisher编码和距离学习构建全局特征描述子的非刚体三维模型检索方法.首先提取三维模型的局部特征描述子,利用混合高斯模型对特征集合进行无监督字典学习;然后将局部描述子和字典中心作为输入,通过Fisher编码方法得到新的特征编码;最后采用距离学习对特征编码进行空间映射,重构得到类内距离小类间距离大的全局特征描述子,用于非刚体三维模型检索.在公开数据集SHREC10和SHREC11上进行实验的结果表明,相比于传统方法,该方法在检索精度上有显著提高.

     

    Abstract: In order to solve the problem of insufficient representation of the non rigid 3 D feature descriptor, we propose a new method of non rigid 3 D model retrieval based on Fisher Vector coding and distance learning. Firstly, we extract the local descriptor of 3 D model to train the dictionary by using Gaussian mixture model; then, the local descriptor and the dictionary centers are used as inputs to learn the new feature codes by Fisher Vector encoding method; finally, we map the feature codes with distance learning aiming to construct an efficient global feature with a small inter-class margin and a large intra-class variance, which is used for non rigid 3 D model retrieval. We validate our method on the open data sets SHREC10 and SHREC11. The results show that the method achieves a higher accuracy than the traditional method.

     

/

返回文章
返回