基于卷积神经网络的多孔结构设计
Porous Model Design Using Artificial Neural Network
-
摘要: 为在模型内部生成模式可控的多孔结构,提出一种将二维孔隙模式转换到三维结构的设计方法.首先将孔隙设计模式分为孔隙分布和孔隙形状2类特征,然后使用卷积神经网络从训练集中提取孔隙分布特征,最后使用一个模式转换流程将孔隙分布转化到三维网格模型中.实验结果证明,该方法能够为多孔结构设计提供一个有效的机制.Abstract: In order to generate controllable porous structure inside different models,we present a method of transferring the two-dimensional porous pattern to three-dimensional structures in this paper.The porous pattern is consisted of the distribution pattern and filling pattern.A convolutional neural network is used to memorize the distribution pattern,and a pattern transferring process is applied to transfer the two-dimensional distribution to three-dimensional models.Experiments verified that our method can provide an effective mechanism for porous structure design.