高级检索

采用稀疏变换和拉普拉斯金字塔的数字水印算法

Digital Watermarking Algorithm Using Sparse Transform and Laplace Pyramid

  • 摘要: 基于压缩感知的数字水印算法在检测端通过随机测量矩阵迭代求解稀疏系数过程中,会导致检测端耗时过长、缺乏实用性,且感知出的水印图像质量较低的问题,为此,提出一种采用稀疏变换和拉普拉斯金字塔的数字水印算法.该算法结合新的稀疏模型(稀疏变换),在嵌入端对载体图像进行单层拉普拉斯金字塔分解,均匀分割获取到的低频子带,并将分割后的图像块拓展为向量训练稀疏变换矩阵,在稀疏域中选择全局系数最小值进行水印嵌入.水印检测时则直接通过矩阵相乘的方式,将含水印载体图像的低频子带变换到稀疏域进行检测,而不需要重新求解稀疏.实验结果表明,文中算法在检测端耗时较少,具有较好的透明性,且对JPEG压缩、滤波、噪声、剪切等常见图像攻击均具有较好的鲁棒性.

     

    Abstract: The compressive sensing based digital watermarking algorithm solves the sparse coefficients by using the random measurement matrix at the detection port,but such operation usually results in time-consuming detection process,lacks of practicality and the quality of the watermark reconstructed by compressive sensing is generally low.To address these issues,a novel watermarking algorithms using the sparse transform and Laplacian pyramid is proposed.Our formulations combine a new sparse model(i.e.,sparse transform),decompose the carrier image using the single-layer Laplacian pyramid at the embedding port,and segment the low frequency subband uniformly.Then,the segmented image patches are expanded into vectors to learn the sparse transform,and choose the minimum value of the global coefficients in the sparse domain for embedding.As a result,when detecting the watermark,one can adopt the matrix multiplication strategy directly to transform the low-frequency subband of the watermarked images into the sparse domain for detection,which can avoid the process of re-calculating the sparse coefficients.Extensive experiments demonstrate that our proposed method can cost less time for detection,has better transparency,and moreover is robust against attacking images,such as JPEG compression,filtering,noise and cutting.

     

/

返回文章
返回