高级检索
屠杭垚, 王万良, 陈嘉诚, 李国庆, 吴菲. 基于条件生成对抗网络的图像翻译综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.19807
引用本文: 屠杭垚, 王万良, 陈嘉诚, 李国庆, 吴菲. 基于条件生成对抗网络的图像翻译综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.19807
Hangyao Tu, Wanliang Wang, Jiacheng Chen, Guoqing Li, Fei Wu. A Survey of Image Translation Based on Conditional Generative Adversarial Networks[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.19807
Citation: Hangyao Tu, Wanliang Wang, Jiacheng Chen, Guoqing Li, Fei Wu. A Survey of Image Translation Based on Conditional Generative Adversarial Networks[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.19807

基于条件生成对抗网络的图像翻译综述

A Survey of Image Translation Based on Conditional Generative Adversarial Networks

  • 摘要: 图像翻译旨在实现多组不同领域图像间的转换, 同时需要约束样本空间与目标空间分布的一致性. 文章旨在寻找条件生成对抗网络与图像翻译问题的结合点, 首先介绍了数据集的特点,指出了不同数据集图像翻译难易程度; 其次, 从数学表达、性质以及目标函数设计方法得出算法实现的不同方式; 将现有图像翻译分成3种类别—匹配图像翻译、非匹配图像翻译和多领域图像翻译, 并得出不同应用场景所对应的图像翻译类别: 即高清任务对应匹配图像翻译,低成本任务对应非匹配图像翻译,多样化任务对应多领域图像翻译; 将图像质量评价方法分为主观图像质量评价与客观图像质量评价, 并分析客观图像质量评价中全参考图像与无参考图像质量评价的适用范围, 最后, 总结条件生成对抗网络在图像翻译中的进展, 并分析算法后指出了模式崩塌, 模型可解释性和少样本等未来所需解决的问题.

     

    Abstract: Image translation aims to achieve conversion between multiple sets of images in different fields, and at the same time needs to constrain the consistency of the distribution of the sample space and the target space. The article aims to find the combination of conditional generative adversarial networks and image translation problems. Firstly, it introduces the characteristics of the datasets , pointed out the difficulty of image translation in different datasets; secondly, derived different ways of algorithm implementation from mathematical expressions, properties and objective function design methods; divided existing image translation into three categories - paired image translation and unpaired image translation and multi-domain image translation, and obtained the image translation categories corresponding to different application scenarios: that is, high-definition tasks correspond to paired image translation, low-cost tasks correspond to unpaired image translation, and diversified tasks correspond to multi-domain image translation; The image quality evaluation method is divided into subjective image quality evaluation and objective image quality evaluation, and the applicable scope of full reference image and no reference image quality evaluation in objective image quality evaluation is analyzed. Finally, we summarized the progress of conditional generative adversarial networks in image translation, and analyzed the algorithm to point out the problems that need to be solved in the future such as mode collapse, model interpretability and few samples.

     

/

返回文章
返回