高级检索
徐翔, 吴小龙, 陈子凌, 陈然, 徐延宁, 王璐. 大规模三维场景光线追踪渲染方法综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089..2023-00614
引用本文: 徐翔, 吴小龙, 陈子凌, 陈然, 徐延宁, 王璐. 大规模三维场景光线追踪渲染方法综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089..2023-00614
Xiang Xu, Xiaolong Wu, Ziling Chen, Ran Chen, Yanning Xu, Lu Wang. An Survey of Ray Tracing Rendering of Large Scale Scenes[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089..2023-00614
Citation: Xiang Xu, Xiaolong Wu, Ziling Chen, Ran Chen, Yanning Xu, Lu Wang. An Survey of Ray Tracing Rendering of Large Scale Scenes[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089..2023-00614

大规模三维场景光线追踪渲染方法综述

An Survey of Ray Tracing Rendering of Large Scale Scenes

  • 摘要: 光线追踪是目前最常用的真实感渲染算法, 在三维动画、虚拟现实、数字孪生等领域发挥着巨大作用. 随着人们对场景呈现精度和质量的要求不断增加, 大规模场景光线追踪渲染方法受到了广泛关注. 文章对大规模场景光线追踪的相关工作进行综述, 并从多个角度对各类方法进行分析. 首先从场景数据压缩和场景数据分解2个方面简述了大规模场景的数据组织方法; 然后回顾了内外存调度光线追踪方法, 并分析了LOD在该类方法中的应用; 接着介绍了分布式光线追踪方法, 并将其分为屏幕空间并行、数据并行和混合并行3类进行分析对比; 最后, 总结大规模场景光线追踪的研究进展, 分析现有方法在数据存储、数据访问、渲染质量、渲染速度等方面的问题, 并指出可能的未来研究方向, 包括基于神经网络的场景数据压缩、实例化场景数据分解、计算热点预测、自适应分布式策略等.

     

    Abstract: Ray tracing is the most commonly used realistic rendering algorithm, which plays a great role in 3D animation, virtual reality, digital twin and other fields. The increasing demand for rendering quality has brought a lot of attention to large-scale scene ray tracing. In this paper, we review and analyse the related work on large-scale scene ray tracing. Firstly, we introduces the data organization of large-scale scenes from data compression and decomposition; secondly, we reviews the out-of-core ray tracing methods, and analyses the application of LOD in these methods; thirdly, we introduces the distributed ray tracing methods, and classifies them into to image-space parallel, data parallel, and hybrid parallel for analysis and comparison; Finally, we summaries the research progress of large-scale scene ray tracing, analyse the problems of existing methods in data storage, data access, rendering quality, rendering speed, etc., and point out the possible future research directions, including neural network-based scene data compression, instantiated scene data decomposition, computational hotspot prediction, and adaptive distributed strategies.

     

/

返回文章
返回