高级检索
张军, 张洋, 石陆魁, 潘斌, 史进. 基于缺陷引导与差异映射的级联网络用于表面缺陷检测[J]. 计算机辅助设计与图形学学报.
引用本文: 张军, 张洋, 石陆魁, 潘斌, 史进. 基于缺陷引导与差异映射的级联网络用于表面缺陷检测[J]. 计算机辅助设计与图形学学报.
Jun Zhang, Yang Zhang, Lukui Shi, Bin Pan, Jin Shi. GM-Net: Surface Defect Detection Based on Defect Guidance and Differential Mapping Cascaded Network[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Jun Zhang, Yang Zhang, Lukui Shi, Bin Pan, Jin Shi. GM-Net: Surface Defect Detection Based on Defect Guidance and Differential Mapping Cascaded Network[J]. Journal of Computer-Aided Design & Computer Graphics.

基于缺陷引导与差异映射的级联网络用于表面缺陷检测

GM-Net: Surface Defect Detection Based on Defect Guidance and Differential Mapping Cascaded Network

  • 摘要: 针对基于正常样本训练的无监督重构网络在训练阶段缺少缺陷信息指导和捕获高层次语义信息能力不足的问题, 提出一种基于缺陷引导与差异映射的级联网络模型GM-Net. 该模型由缺陷生成器、缺陷引导重构模块和差异映射孪生模块组成, 首先使用缺陷生成器将无缺陷的正常样本构造为与实际缺陷无关的伪缺陷样本, 同时提取得到对应的正常特征和伪缺陷特征; 然后利用缺陷引导重构模块对随机选择输入的正常特征或伪缺陷特征均以正常特征为目标进行重构; 最后通过差异映射孪生模块提取重构前后特征间差异并映射到图像空间内, 实现缺陷检测. GM-Net在定向引导缺陷重构的同时增强了特征间差异在图像空间内的表达能力, 在KolektorSDD和KolektorSDD2数据集上进行性能测试, AUC指标分别达到0.855和0.949.

     

    Abstract: A cascaded network model, GM-Net, is proposed to address the issues of unsupervised reconstruction networks trained on normal samples lacking defect information and insufficient ability to capture high-level semantic information during training. The model consists of a defect generator, a defect-guided reconstruction module, and a difference mapping siamese module. First, the defect generator is used to construct pseudo-defective samples that are unrelated to actual defects from normal samples, and corresponding normal and pseudo-defective features are extracted. Then, the defect-guided reconstruction module reconstructs randomly selected normal features or pseudo-defective features with normal features as the target. Finally, the difference mapping siamese module extracts the difference between the features before and after reconstruction and maps them to the image space to achieve defect detection. GM-Net enhances the representation ability of feature differences in the image space while guiding defect reconstruction. Performance tests were conducted on the KolektorSDD and KolektorSDD2 datasets, with AUC scores of 0.855 and 0.949, respectively.

     

/

返回文章
返回