投审稿平台


投稿指南
下载专区
地  址:北京市海淀区中关村科学院
南路6号中国科学院计算所342号 [地图]
《计算机辅助设计与图形学学报》编辑部
邮政编码:100190
电  话:010-62562491
          010-62600342
订阅信息
ISSN      1003-9775
CN        11-2925/TP
邮发代号:82-456
单    价:80.00元
全年订价:960.00元
在线期刊

雾天退化模型参数估计与CUDA设计

余春艳, 林晖翔, 徐小丹, 叶鑫焱
(福州大学数学与计算机科学学院 福州 350116)
分类号: TP391.41 DOI: 10.3724/SP.J.1089.2018.16288
出版年,卷(期):页码: 2018 , 30 ( 2 ): 327-335 林晖翔
摘要: 针对基于物理模型的去雾方法大多采用统计或假设等先验信息获取模型参数精度较低的问题, 提出一种非假设的雾天退化模型参数估计方法. 为了尽可能准确地获取大气光值和透射率值, 首先采用四叉树算法求解大气光值; 随后利用预训练的卷积神经网络获取粗略透射率图, 并使用引导滤波算法优化透射率图; 最后通过大气散射模型逆向求解获取复原图像. 实验结果表明, 文中方法在去雾各项性能指标上表现均衡, 不仅提高了雾天图像的清晰度和亮度, 而且可以有效地避免“晕轮效应”. 算法时间性能实验表明, 文中算法CPU效率比其他去雾算法提高40 %+, 应用CUDA并行设计将耗时的引导滤波算法并行化后效率有显著提升, 处理分辨率大小为640×480(单位为像素)雾天图像仅需0.048 9 s, 可直接迁移应用于视频去雾处理, 满足视频处理的实时性要求.
关键词: 大气散射模型; 四叉树算法; 卷积神经网络; CUDA
Parameter Estimation of Fog Degradation Model and CUDA Design
Yu Chunyan, Lin Huixiang, Xu Xiaodan, and Ye Xinyan
(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116)
abstract: Defogging algorithms based on atmospheric model always had atmospheric light and medium transmission limited by statistical or hypothetical information. Hence a non-hypothetical parameter estimation method was proposed. For precisely acquiring these parameters, the atmospheric light was solved by a quad-tree algorithm firstly. Secondly, a pre-trained convolutional neural network was proposed for estimating the transmission map optimized by the guided filtering algorithm further. Finally, by reversely solving the atmospheric scattering model, the de-fogging image was obtained. Experiments show that the proposed method has balanced performance on each index. It not only improves the degree of foggy image definition and brightness, but also efficiently avoids the Halo effect. Time performance also analysis indicates that, compared to other defogging algorithms, efficiency of our algorithm using CPU has increased 40 % at least. After parallelizing the time-consuming guided filtering algorithm through CUDA, the efficiency has improved remarkably which can process a fog image with the resolution of 640×480 pixels only in 0.048 9 s. It can be directly applied to video processing to meet real-time requirement.
keyword: atmospheric scattering model; quad-tree algorithm; convolutional neural network; CUDA
 
Copyright © 2004《计算机辅助设计与图形学学报》版权所有
电话:010-62600342 传真:010-62562491
E_mail:jcad@ict.ac.cn