投审稿平台
投稿指南
下载专区
地  址:北京市海淀区中关村科学院
南路6号中国科学院计算所342号 [地图]
《计算机辅助设计与图形学学报》编辑部
邮政编码:100190
电  话:010-62562491
          010-62600342
订阅信息
ISSN      1003-9775
CN        11-2925/TP
邮发代号:82-456
单    价:60.00元
全年订价:720.00元
在线期刊

基于变换的大图点边可视化综述

时 磊1), 廖 琦2), 林 闯3)
1)(中国科学院软件研究所计算机科学国家重点实验室 北京 100190) 2)(美国中密歇根大学计算机科学系 美国密歇根省愉悦峰 48859) 3)(清华大学计算机科学与技术系 北京 100084)
分类号: TP391
出版年,卷(期):页码: 2013 , 15 ( 3 ): 304-311 pdf下载
摘要: 大图可视化是信息可视化领域的前沿课题之一,也是在线社会网络、信息安全、电子商务等热点行业大数据分析的重要支撑技术.基于变换的大图点边可视化方法由于其具有在线处理时间短、可视复杂度低、交互方法灵活多样等优点,近年来在学术界与实际商用系统中得到广泛重视与应用.文中从图可视化的基本概念及其在大图上的关键挑战出发,梳理了基于变换的大图点边可视化方法的典型分类与主要流程;通过详述3类基于变换的大图点边可视化典型方法(图数据抽象、视图变换与视角转换),阐明了不同方案的优缺点与适用场景,并进一步指出了未来工作的可行方向与潜在难点.
关键词: 大图可视化;图数据抽象;视图变换;视角转换
Survey on Transformation-based Large Graph Visualization
Shi Lei1), Liao Qi2), and Lin Chuang3)
1)(State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190) 2)(Computer Science Department, Central Michigan University, Mount Pleasant, MI 48859 United States) 3)(Department of Computer Science and Technology, Tsinghua University, Beijing 100084)
abstract: Large graph visualization is one of the hot topics in the information visualization research field. It is also widely accepted as the fundamental technique of the big data analytics in industries such as online social networks, information security and e-business. The transformation-based large graph visualization methods have been intensively studied recently due to their advantages over the classical drawing methods in the fast processing speed, low visual complexity and versatile interactions available. They are adopted in many real-world systems and applications. In this paper, we start from the basic concept of large graph visualization and its major challenges. We classify this kind of methods into three types (graph abstraction, view transformation and view point transition) and introduce in detail the representative approaches in each type. Both the pros/cons and the practical usage scenarios are talked about for these methods. Future directions are discussed with respect to the potential technical challenges going ahead.
keyword: large graph visualization; graph abstraction; view transformation; view point transition
 
Copyright © 2004《计算机辅助设计与图形学学报》版权所有
电话:010-62600342 传真:010-62562491
E_mail:jcad@ict.ac.cn